NOVEDAD

¡¡¡Felíz Navidad y próspero año 2025!!! Olimpiadas de Robótica 2025 WRO

Uso de la tabla de distribución de probabilidad normal estándar


Áreas bajo la distribución de probabilidad Normal Estándar entre la media y valores positivos de Z. µ = 0 y σ²=1


Tabla distribución de probabilidad normal estándar

Observamos que en la tabla la localización de la columna identificada como z. EL valor de z está derivado de la fórmula: 


En donde su  parámetros son:

x = Valor de la variable aleatoria que nos preocupa
= Media de la distribución de la variable aleatoria
 = Desviación estándar de la distribución 
z = Número de desviación estándar que hay desde x hasta la media de la distribución


  Utilizamos Z en lugar del ‘número de desviaciones estándar’ porque las variables aleatorias normalmente distribuidas tienen muchas unidades diferentes de medición: dólares, pulgadas, partes por millón, kilogramos, segundos. Como vamos a utilizar una tabla, la tabla I, hablamos en términos de unidades estándar (que en realidad significa desviaciones estándar), y denotamos a éstas con el símbolo z.




 La tabla representa las probabilidades o áreas bajo la curva normal calculadas desde la  hasta los valores particulares de interés X. Usando la ecuación de Z, esto corresponde a las probabilidades o áreas bajo la curva normal estandarizada desde la media ( = 0) hasta los valores transformados de interés Z. 
 Sólo se enumeran entradas positivas de Z en la tabla, puesto que para una distribución simétrica de este tipo con una media de cero, el área que va desde la media hasta +Z (es decir, Z desviaciones estándar por encima de la media) debe ser idéntica al área que va desde la media hasta –Z (es decir, Z desviaciones estándar por debajo de la media).


 También podemos encontrar la tabla que indica el área bajo la curva normal estándar que corresponde a P(Z < z) para valores de z que van de –3.49 a 3.49. 

 Al usar la tabla observamos que todos los valores Z deben registrarse con hasta dos lugares decimales. Por tanto, nuestro valor de interés particular Z se registra como +.2. para leer el área de probabilidad bajo la curva desde la media hasta Z = +.20, podemos recorrer hacia abajo la columna Z de la tabla hasta que ubiquemos el valor de interés Z. Así pues, nos detenemos en la fila Z = .2. A continuación, leemos esta fila hasta que intersecamos la columna que contiene el lugar de centésimas del valor Z. Por lo tanto, en la tabla, la probabilidad tabulada para Z = 0.20 corresponde a la intersección de la fila Z = .2 con la columna Z = .00 como se muestra.

  En el caso de localizar en la Tabla Z el nivel de confianza seleccionado por ejemplo del 95% de confianza, se divide 0,95 (P entre 0 y 1) entre 2= 0,4750; 0,98= 0,49 y 0,99= 0,495.

Localización en Tabla:





Comentarios